
CompressStreamDB:
Fine-Grained Adaptive Stream Processing without 
Decompression

Renmin University of China

Singapore University of Technology

2023 IEEE 39th International Conference on Data Engineering (ICDE)



• 12.3 billion IoT endpoints (2021)

• Data

• Sensor data

• Financial transactions

• Etc.

The Growth Of IoT

2

“State of IoT 2021,” https://iot-analytics.com/

number-connected-iot-devices/, 2021.



Time Breakdown for Uncompressed Streams

3



Linear Road System

4



Stream Processing → Streaming SQL

Stream Processing

▪ “Real-time processing of continuous streams 
of data, events, and messages.”

▪ Applied to:

▪ Dataflow systems

▪ Reactive systems

▪ Real-time systems

Streaming SQL

▪ Extension of stream processing

▪ Query data streams continuously instead of all 
at once

5



Compression Algorithms
Choosing the right algorithms

6

▪ Lossless vs Lossy

▪ Accuracy required

▪ Lightweight vs heavyweight

▪ Need minimal (de)compression overhead

▪ Eager and lazy compression algorithms considered

▪ Eager: compress when a tuple arrives

▪ Lazy: compress after waiting for an entire batch



Compression Method Description

Eager Elias Gamma Encoding Encode each value with unary and binary bits.

E Elias Delta Encoding Encode each value with unary and binary bits.

E Null Suppression with Fixed Length Delete leading zeros of each value with fixed bits.

E Null Suppression with Variable Length Delete leading zeros of each value with variable bits.

Lazy Base-Delta Encoding Encode values as their delta values from base value

L Run Length Encoding Encode values with their run lengths.

L Dictionary Maintain a dictionary of the distinct values.

L Bitmap Encode each distinct value as a bit-string.

Eager and Lazy Compression Methods in Lightweight 
Compression

7

Table I



CompressStreamDB Framework

8



▪ Compression

▪ 8 different algorithms

▪ 4 fixed length

▪ 4 variable length

▪ Adaptive processing for dynamic workload

▪ Use SQL for processing

▪ Algorithms are reselected after a preset number of batches

▪ Query without decompression

1. Compressed data is similar to the original data

2. Compressed stream data is aligned

3. Compression does not affect the order of the stream

Compressed Stream Processing

9

Example:

SELECT col1, AVG(col2) FROM data 
GROUP BY col3;

MAPPED TO:

SELECT col1’, AVG(col2’) FROM data 
GROUP BY col3’;

Pre-Compression Post-Compression

col1 8 bytes col1’ 2 bytes

col2 4 bytes col2’ 1 bytes

col3 4 bytes col3’ 1 bytes



System Cost Model
4 Stages

10

▪ Compression

▪ Transmission

▪ Decompression*

▪ Query Processing

* Decompression is not always necessary



Stream Processing

System Cost:

Compression Time:

Transmission Time:

Decompression Time:

Query Time:

System Cost Model

11



▪ Client

▪ Compression algorithms

▪ Adaptive selector

▪ Server

▪ SQL operators

▪ Processing compressed streams

▪ Profiler to collect performance data

▪ (de)compression

▪ transmission time

Implementation
Client - Server

12



▪ Baseline: CompressStreamDB without compression

▪ Platform: Client & Server

▪ Intel Xeon Platinum 8269CY

▪ 2.5 GHz CPU

▪ 16GB memory

▪ Ubuntu 20.04.3 LTS

▪ Java 8

▪ Network from 0 to 1Gbps between client & server

▪ Datasets:

▪ Energy consumption measurement in smart grids

▪ Compute cluster monitoring

▪ Linear road benchmark

Evaluation

13



Evaluation
Benchmarks

14



Performance Comparison
Throughput

15

▪ On average, CompressStreamDB improves 
throughput by 3.24× across all datasets 
and queries

▪ Smart Grid dataset: 4.80× faster than the 
baseline, with DICT encoding providing a 
3.00× improvement

▪ Linear road benchmark dataset: 2.38× 
throughput improvement compared to the 
baseline, outperforming NS by 4.4%

▪ Google Cluster Monitoring dataset: 2.55× 
throughput improvement, surpassing Base-
Delta by 8.1%



Performance Comparison
Latency

16

▪ On average, CompressStreamDB achieves a 
significant 66.0% reduction in latency across 
all datasets

▪ Smart Grid dataset: CompressStreamDB 
demonstrates a 79.2% lower latency 
compared to the uncompressed system and 
a 37.5% improvement over DICT encoding

▪ Linear road benchmark dataset: 
CompressStreamDB shows a 58.0% lower 
latency compared to the baseline, with a 
4.2% improvement over NS

▪ Google Cluster Monitoring dataset: 
CompressStreamDB achieves a 60.8% 
reduction in latency compared to the 
baseline, outperforming Base-Delta by 7.4%. 



Performance Comparison
Dynamic Workload

17

▪ 100Mbps speed has the highest 
performance improvement against the 
baseline

▪ Optimal Static Method: 3.97x speedup

▪ CompressStreamDB: 9.68x speedup



Model Accuracy

18

▪ On average, the CompressStreamDB cost model is 88.2% accurate 



▪ 3.24x throughput improvement

▪ 66.0% lower latency

▪ 66.8% space savings

▪ The system is positioned to integrate more compression schemes

CompressStreamDB

19



Thank You


	Slide 1: CompressStreamDB:
	Slide 2: The Growth Of IoT
	Slide 3: Time Breakdown for Uncompressed Streams
	Slide 4: Linear Road System
	Slide 5: Stream Processing  Streaming SQL
	Slide 6: Compression Algorithms
	Slide 7: Eager and Lazy Compression Methods in Lightweight Compression
	Slide 8: CompressStreamDB Framework
	Slide 9: Compressed Stream Processing
	Slide 10: System Cost Model
	Slide 11: System Cost Model
	Slide 12: Implementation
	Slide 13: Evaluation
	Slide 14: Evaluation
	Slide 15: Performance Comparison
	Slide 16: Performance Comparison
	Slide 17: Performance Comparison
	Slide 18: Model Accuracy
	Slide 19: CompressStreamDB
	Slide 20: Thank You

