CompressStreambDB:

Fine-Grained Adaptive Stream Processing without
Decompression

Renmin University of China
Singapore University of Technology

2023 IEEE 39th International Conference on Data Engineering (ICDE)

27 FARDVE

The Growth Of loT

 12.3 billion loT endpoints (2021)

* Data
 Sensor data
* Financial transactions
e Etc.

2 10T ANALYTICS

May 2023

Your Global loT Market Research Partner

Global loT market forecast (in billions of connected loT devices)

Number of global active loT connections (installed base) in billions

30 - 29'7C0nnectivit\¢' type

Actuals until 04/2022 |

CAGR 21-22 CAGR 22-27

¢
8

Wireless Local
Area Networks (WLAN)

Wireless Personal

0 = Area Networks (WPAN)
2015a 2016a 2017a 2018a 2019a 2020a 2021a 2022a 2023f 2024f 2025f 2026f 2027f
G acn
Nate: 1T cannections do not include any computers, laptops, fixed phones, cellghane: ors tablets, Counted are active nodes/d gateways that e the end-sensors, not every sensor/actuator. Simple one-directional technology n

des ethernet and fieldbuses (¢.g., connected industrial PLC or Cellular includes 26, 3G, 4G, 56; LPWA includes unlicensed and licensed low-power netwarks; WPAN includes Bluetooth, Zigbe, Z-Wave or similar; WLAN includes Wi-Fi and rela(ed pmm:ols
WNAN includes non-short-range mesh, such as Wi-SUN; Other includes satellite and unclassified proprietary networks with any range.
Souree: laT Analytics Research 2023. We welcome republishing of images but ask for source citation with a link ta the original post and company website

PURDUE

UNIVERSITY.

s

“State of loT 2021,” https://iot-analytics.com/
number-connected-iot-devices/, 2021.

Time Breakdown for Uncompressed Streams

0 Network Other
100% S .
"”;‘% Z 7 7 Z g
S 7/ 7% 77
75% E}Eg% "*"‘;’//A 7 7/
77 0 7
. o W'M
7 V277 7
50% !2.;:::::: ;//f
86% 83%
72%
25% 49% 46% 54%
0%
Smart Grid Linear Road Cluster Smart Grid Linear Road Cluster
Benchmark Monitoring Benchmark Monitoring
500Mbps 1Gbps
Fig. 3. Total time breakdown.

E PURDUE

UNIVERSITY.

Linear Road System

E e —— Gengratmg —
location \ .'.—‘
information s ™y
> ="

Road
Condition l
% Processing on
Determining }0” operator Stream :
— price % 3} System Queries

Fig. 1. Use case of linear road system.

2~ FURDYE

Stream Processing > Streaming SOL

Stream Processing Streaming SQL

= “Real-time processing of continuous streams = Extension of stream processing

of data, events, and messages. * Query data streams continuously instead of all

= Applied to: at once
= Dataflow systems
= Reactive systems
= Real-time systems

2~ FURDYE

Compression Algorithms

= Lossless vs Lossy
= Accuracy required

= Lightweight vs heawweight

= Need minimal (de)compression overhead

= Fager and lazy compression algorithms considered
= Eager: compress when a tuple arrives
= Lazy: compress after waiting for an entire batch

2~ FURDYE

Eager and Lazy Compression Methods in Lightweight

Compression

Eager Elias Gamma Encoding

E Elias Delta Encoding

E Null Suppression with Fixed Length

E Null Suppression with Variable Length
Lazy Base-Delta Encoding

L Run Length Encoding

L Dictionary

L Bitmap

Table |

2~ FURDYE

Encode each value with unary and binary bits.
Encode each value with unary and binary bits.
Delete leading zeros of each value with fixed bits.
Delete leading zeros of each value with variable bits.
Encode values as their delta values from base value
Encode values with their run lengths.

Maintain a dictionary of the distinct values.

Encode each distinct value as a bit-string.

CompressStreamDB Framework

s

PURDUE

UNIVERSITY.

Batch Batch Batch Stream
ym—m—————— ‘ fmm——————— ‘ jmmmm ‘ ——>
|
\ ! | ! ! ! ce
Ve e 7 | / e o e 7
sQL)
v Bandwidth N R
Server Data > Result
Selecto Machine 4
Client Performance Transmit
coly coly,
col, col,, il il
Il Il decompress, | - - -decompress,
compress; compressy,

Fig. 4. CompressStreamDB framework.

Compressed Stream Processing

= Compression Example:
= 8 different algorithms
= 4 fixed length

» 4 variable |ength coll 8 bytes coll’ 2 bytes

. . . 24 b 2" 1b
= Adaptive processing for dynamic workload col< 4 bytes cole” 1 bytes
col3 4 bytes col3’ 1 bytes

= Use SQL for processing
= Algorithms are reselected after a preset number of batches SELECT col1, AVG(col2) FROM data

= Query without decompression GROUP BY col3;
1. Compressed data is similar to the original data MAPPED TO:
2. Compress_ed stream data is aligned SELECT col1’, AVG(col2’) FROM data
3. Compression does not affect the order of the stream GROUP BY col3’:

2~ FURDYE

System Cost Mode/

Compression

Transmission

Decompression®*

Query Processing

* Decompression is not always necessary

2~ FURDYE

TABLE II

SYMBOLS AND MEANINGS.
Symbol Description
o The compression algorithm is lazy or eager.
I5; Whether the compression needs decompression.
T The compression ratio in transmission step.
r’ The compression ratio in query step.
T The compression algorithm.
Sizer The number of bytes per tuple.
Sizep The number of tuples per batch.

Nepient&Nserver

qeom, T &Tdecom,’r
memory memory

qeom,T decom,T
operation operation

The
The
The

machine performance.

number of instructions for memory accesses.

number of instructions for computation.

10

System Cost Mode/

SyStem Cost: t tcompress + ttrans + tdecom + tque'ry (1)

TABLE 11
SYMBOLS AND MEANINGS.

Symbol

Description

TCO’H’L,T
memory

+ T g
peration r
(2)

Nclient

Compression Time: tcompress = O * twait T

Sizep
Sizep
]Vcl'llent&NH(iv“uar

Teom,T &Tdecmn,‘r
memory memory
_mdecom,T

operation

Teo™T
operation

Sizer - Sizep

The compression algorithm is lazy or eager.
Whether the compression needs decompression.
The compression ratio in transmission step.

The compression ratio in query step.

The compression algorithm.

The number of bytes per tuple.

The number of tuples per batch.

The machine performance.

The number of instructions for memory accesses.
The number of instructions for computation.

ttran‘s —

(4)

Transmission Time: - latency

r

decom,T
T)

operalion

N.se'rve'r

Tdecom,,'r e

memory

DecompreSSion Time: tdecomp'ress — /6 ' (6)

query
Query Time: tquery — /g;”s:gﬁon + w (8)

1, if the compression algorithm 7 is lazy; 3) B= 1, if the compression algorithm 7 needs decompression;

0, if the compression algorithm 7 is eager. 0, otherwise
7 - (7)
, 1, if the compression algorithm needs decompression;

E PURDUE "o r, otherwise.

UNIVERSITY.

9)

11

Implementation

= Client
= Compression algorithms
= Adaptive selector

= Server
= SQL operators
= Processing compressed streams
= Profiler to collect performance data
= (de)compression
= transmission time

2~ FURDYE

Evaluation

= Baseline: CompressStreamDB without compression

= Platform: Client & Server
= |ntel Xeon Platinum 8269CY
= 2.5 GHz CPU
= 16GB memory
= Ubuntu 20.04.3 LTS
= Java 8
= Network from O to 1Gbps between client & server

= Datasets:
= Energy consumption measurement in smart grids
= Compute cluster monitoring
= Linear road benchmark

2~ FURDYE

Evaluation

TABLE II1
THE QUERIES USED IN EVALUATION.
Query Detail

Ol select timestamp, avg (value) as globalAvgLoad from SmartGridStr [range 1024 slide 1]

Q2 select timestamp, plug, household, house, avg(value) as localAvglLoad from SmartGridStr
[range 1024 slide 1] group by plug, household, house

03 (select timestamp, vehicle, speed, highway, lane, direction, (position/5280) as
segment from PosSpeedStr [range unbounded]) as SegSpeedStr -- select distinct
L.timestamp, L.vehicle, L.speed, L.highway, L.lane, L.direction, L.segment from
SegSpeedStr [range 30 slide 1] as A, SegSpeedStr [partition by vehicle rows 1] as L
where A.vehicle == L.vehicle

04 select timestamp, avg(speed), highway, lane, direction from PosSpeedStr [range 1024
slide 1] group by highway, lane,direction

05 select timestamp, category, sum(cpu) as totalCPU from TaskEvents [range 512 slide 1]
group by category

Q6 select timestamp, eventType, userld, max(disk) as maxDisk from TaskEvents [range 512

slide 1] group by eventType, userld

2~ FURDYE

14

Performance Compatison

= On average, CompressStreamDB improves
throughput by 3.24x across all datasets
and queries

= Smart Grid dataset: 4.80x% faster than the
baseline, with DICT encoding providing a
3.00% improvement

= Linear road benchmark dataset: 2.38x
throughput improvement compared to the
baseline, outperforming NS by 4.4%

= Google Cluster Monitoring dataset: 2.55x%
throughput improvement, surpassing Base-
Delta by 8.1%

2~ FURDYE

throughput (G tuple/s)

3

N
— NN
o NNE
by, \ ¥
o 2% N
AN
22 2%

B Baseline

= NSV

® Base-Delta
Bitmap

N DICT

M RLE

Elias-Gamma

2224224

e N

2 \)

T VRN
I % Zi’:% 7

by V7NN]

N\ Elias-Delta
N NS
Smart Grid Linear Road Cluster Monitoring CompressStreamDB

Benchmark

Fig. 5. Throughput of different compression methods.

15

Performance Compatison

= On average, CompressStreamDB achieves a 100
significant 66.0% reduction in latency across 90 " Baseline
all datasets 80 % Base-Delta

70 7 Bitma

= Smart Grid dataset: CompressStreamDB % 60 .Z.ta p
demonstrates a 79.2% lower latency g 50 e
compared to the uncompressed system and 5 40 N
a 37.5% improvement over DICT encoding 28 ativny

= Linear road benchmark dataset: 10 / # NS
CompressStreamDB shows a 58.0% lower 0 e
Iatency compa red to the baseline, with a Smart Grid Linear Road Cluster Monitoring i Corampes<Sicearrb

Benchmark

4.2% improvement over NS o o _
Fig. 6. Latency of different compression methods.

= Google Cluster Monitoring dataset:
CompressStreamDB achieves a 60.8%
reduction in latency compared to the
baseline, outperforming Base-Delta by 7.4%.

2~ FURDYE 1

Performance Compatison

= 100Mbps speed has the highest Static W CompressStreamDB
performance improvement against the 10
baseline .
= Optimal Static Method: 3.97x speedup B i
= CompressStreamDB: 9.68x speedup 3 \
0

50Mbps 100Mbps 500Mbps 1Gbps

Fig. 7. Speedup with dynamic workload.

2~ FURDYE 1

Model Accuracy

= On average, the CompressStreamDB cost model is 88.2% accurate

-a-Estimated -=-Measured

120

100

80

60

time (s)

40

20

Baseline
BD
Bitmap
DICT
RLE

EG

ED

NS

NSV
CmpStr

Fig. 9. Accuracy of the cost model. CmpStr is short for CompressStreamDB.

2~ FURDYE

18

CompressStreamDB

3.24x throughput improvement

66.0% lower latency

66.8% space savings

The system is positioned to integrate more compression schemes

E PURDUE

UNIVERSITY.

[hank You

IIIIIIIIIII

	Slide 1: CompressStreamDB:
	Slide 2: The Growth Of IoT
	Slide 3: Time Breakdown for Uncompressed Streams
	Slide 4: Linear Road System
	Slide 5: Stream Processing  Streaming SQL
	Slide 6: Compression Algorithms
	Slide 7: Eager and Lazy Compression Methods in Lightweight Compression
	Slide 8: CompressStreamDB Framework
	Slide 9: Compressed Stream Processing
	Slide 10: System Cost Model
	Slide 11: System Cost Model
	Slide 12: Implementation
	Slide 13: Evaluation
	Slide 14: Evaluation
	Slide 15: Performance Comparison
	Slide 16: Performance Comparison
	Slide 17: Performance Comparison
	Slide 18: Model Accuracy
	Slide 19: CompressStreamDB
	Slide 20: Thank You

